Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation.

نویسندگان

  • Per Hydbring
  • Fuad Bahram
  • Yingtao Su
  • Susanna Tronnersjö
  • Kari Högstrand
  • Natalie von der Lehr
  • Hamid Reza Sharifi
  • Richard Lilischkis
  • Nadine Hein
  • Siqin Wu
  • Jörg Vervoorts
  • Marie Henriksson
  • Alf Grandien
  • Bernhard Lüscher
  • Lars-Gunnar Larsson
چکیده

The MYC and RAS oncogenes are frequently activated in cancer and, together, are sufficient to transform rodent cells. The basis for this cooperativity remains unclear. We found that although Ras interfered with Myc-induced apoptosis, Myc repressed Ras-induced senescence, together abrogating two main barriers of tumorigenesis. Inhibition of cellular senescence required phosphorylation of Myc at Ser-62 by cyclin E/cyclin-dependent kinase (Cdk) 2. Cdk2 interacted with Myc at promoters, where it affected Myc-dependent regulation of genes, including Bmi-1, p16, p21, and hTERT, which encode proteins known to control senescence. Repression of senescence by Myc was abrogated by the Cdk inhibitor p27Kip1, which is induced by antiproliferative signals like IFN-gamma or by pharmacological inhibitors of Cdk2 but not by inhibitors of other Cdks. In contrast, a phospho-mimicking Myc-S62D mutant was resistant to these manipulations. Inhibition of cyclin E/Cdk2 reversed the senescence-associated gene expression pattern imposed by Myc/cyclin E/Cdk2. This indicates a role of Cdk2 as a transcriptional cofactor and activator of the antisenescence function of Myc and provides mechanistic insight into the Myc-p27Kip1 antagonism. Finally, our findings highlight that pharmacological inhibition of Cdk2 activity is a potential therapeutical principle for cancer therapy, in particular for tumors with activated Myc or Ras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cdk2: a key regulator of the senescence control function of Myc

Proto-oncogenes such as MYC and RAS promote normal cell growth but fuel tumor development when deregulated. However, over-activated Myc and Ras also trigger intrinsic tumor suppressor mechanisms leading to apoptosis and senescence, respectively. When expressed together MYC and RAS are sufficient for oncogenic transformation of primary rodent cells, but the basis for their cooperativity has rema...

متن کامل

Repression of Myc-Ras cotransformation by Mad is mediated by multiple protein-protein interactions.

Mad is a bHLH/Zip protein that, as a heterodimer with Max, can repress Myc-induced transcriptional transactivation. Expression of Mad is induced upon terminal differentiation of several cell types, where it has been postulated to down-regulate Myc-induced genes that drive cell proliferation. Here we show that Mad also blocks transformation of primary rat embryo fibroblasts by c-Myc and the acti...

متن کامل

MYC Modulation around the CDK2/p27/SKP2 Axis

MYC is a pleiotropic transcription factor that controls a number of fundamental cellular processes required for the proliferation and survival of normal and malignant cells, including the cell cycle. MYC interacts with several central cell cycle regulators that control the balance between cell cycle progression and temporary or permanent cell cycle arrest (cellular senescence). Among these are ...

متن کامل

Interferon-γ-induced p27KIP1 binds to and targets MYC for proteasome-mediated degradation.

The Myc oncoprotein is tightly regulated at multiple levels including ubiquitin-mediated protein turnover. We recently demonstrated that inhibition of Cdk2-mediated phosphorylation of Myc at Ser-62 pharmacologically or through interferon (IFN)-γ-induced expression of p27(Kip1) (p27) repressed Myc's activity to suppress cellular senescence and differentiation. In this study we identified an addi...

متن کامل

Cdk2 deficiency decreases ras/CDK4-dependent malignant progression, but not myc-induced tumorigenesis.

We have previously shown that forced expression of CDK4 in mouse skin (K5CDK4 mice) results in increased susceptibility to squamous cell carcinoma (SCC) development in a chemical carcinogenesis protocol. This protocol induces skin papilloma development, causing a selection of cells bearing activating Ha-ras mutations. We have also shown that myc-induced epidermal proliferation and oral tumorige...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 1  شماره 

صفحات  -

تاریخ انتشار 2010